Large Scale Kernel Learning using Block Coordinate Descent

نویسندگان

  • Stephen Tu
  • Rebecca Roelofs
  • Shivaram Venkataraman
  • Benjamin Recht
چکیده

We demonstrate that distributed block coordinate descent can quickly solve kernel regression and classification problems with millions of data points. Armed with this capability, we conduct a thorough comparison between the full kernel, the Nyström method, and random features on three large classification tasks from various domains. Our results suggest that the Nyström method generally achieves better statistical accuracy than random features, but can require significantly more iterations of optimization. Lastly, we derive new rates for block coordinate descent which support our experimental findings when specialized to kernel methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BCDNPKL: Scalable Non-Parametric Kernel Learning Using Block Coordinate Descent

Most existing approaches for non-parametric kernel learning (NPKL) suffer from expensive computation, which would limit their applications to large-scale problems. To address the scalability problem of NPKL, we propose a novel algorithm called BCDNPKL, which is very efficient and scalable. Superior to most existing approaches, BCDNPKL keeps away from semidefinite programming (SDP) and eigen-dec...

متن کامل

Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems

We consider convex-concave saddle point problems with a separable structure and non-strongly convex functions. We propose an efficient stochastic block coordinate descent method using adaptive primal-dual updates, which enables flexible parallel optimization for large-scale problems. Our method shares the efficiency and flexibility of block coordinate descent methods with the simplicity of prim...

متن کامل

A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation

The sparse inverse covariance estimation problem arises in many statistical applications in machine learning and signal processing. In this problem, the inverse of a covariance matrix of a multivariate normal distribution is estimated, assuming that it is sparse. An `1 regularized log-determinant optimization problem is typically solved to approximate such matrices. Because of memory limitation...

متن کامل

Feature Clustering for Accelerating Parallel Coordinate Descent

Large-scale `1-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. High-performance algorithms and implementations are critical to efficiently solving these problems. Building upon previous work on coordinate descent algorithms for `1-regularized probl...

متن کامل

Learning output kernels for multi-task problems

Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1602.05310  شماره 

صفحات  -

تاریخ انتشار 2016